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Received 22 March 1993, in final form 17 September 1993 

Abstract. The CarlSon-Gelatt-Ehrenreich inversion technique is applied to the derivation of 
pair potentials for the elemental bonds C-C and SiSi.  and the compound bond Si<. Chen's 
Mobius function method is used to speed up the convergency. The cohesive energies m 
obtained from the ob initio pseudopotential total energy wlculation of Chang and Cohen within 
the framework of the local-density approximation and fined to the universal binding enefgy 
function of Rose e~ al. The pair potentials thus obtained reproduce ex3cUy the full cohesive 
energy curves, lattice constants and bulk moduli. 

1. Introduction 

It is most helpful to atomic simulation if the interatomic potential can be expressed pairwise, 
in the same way as the Lennard-Jones potential used in van der Waals solids, and the Morse 
potential used in metals. Nowadays, an efficient method has been developed to derive 
exactly pair potentials from experiments or accurate cohesive energies 111. The method was 
originally developed by Carlsson, Gelatt and Ehrenreich (CGE) [2] and improved by Chen 
and Ren [I] using the Mobius inversion procedure. The method has been used to derive 
pair potentials for copper by Mookerjee et al [3]. In general, there are additional terms 
which cannot be expressed pairwise in the cohesive energy [4,5], such as the bond energy 
in the tight-binding bond model [5 ] .  However, as long as one can calculate these terms 
independently and leave the pair terms on one side of equation, the method to derive the 
pair terms is the same. The merits of the method are that no fitting parameter is needed 
and the full cohesive energy function is reproduced, instead of only the equilibrium points 
as in the case of the empirical methods. In this paper, we apply the method to the Si-C 
system. The system is interesting because using this method for the diamond-like structure 
and for a compound system has not been tackled before. However, as previously [ 1.21, no 
effort is made to evaluate the non-pairwise terms in the cohesive energy, which is still an 
active field. The effects of neglecting these terms have been discussed together with the 
limitation of pair potentials [6,71. 

2. Method 

Our starting point is that the cohesive energy is expressed as a sum of radial pair potentials 
as follows: 
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where n,, is the number of pth-neighbour atoms at the distance S,rl from the atom at 
origin and r l  is the nearest-neighbour distance. For a given lattice, np  and S,, can be easily 
determined. For example, for the diamond structure, one obtains 

where r = 4rl/& Thus SI = I ,  nl = 4, S, = 2f iJz /J? ,  nl = 12, etc. 

operators T and U ,  gives 
The method is formally as follows. Expressing equation ( I )  as the operation of two 

Emh(rI) ( T +  u ) $ ( r t ) .  (3) 

Then, if the inverse of T is obtainable, one finds that 

In the original CGE paper, T was chosen as the operation to produce the first term of 
equation ( I ) ,  i.e. 

W ( r t )  = 1 / 2 n t W i r t )  (5) 

and the inverse of T is 

T - ' $ h )  = Z/n1$(rt/&) (6) 

since 

T T - I + ( r t )  = @ ( r l ) .  (7) 

The operation on U produces the sum of all the terms except p = 1 in equation ( I ) .  
Once the function EcOh(rI) is given, a pair potential can then be derived. In practice, 

the convergence of the series in equation (4) may be very slow. On the basis of the Mobius 
inversion formula, Chen and Ren [ I ]  have demonstrated that a faster convergent series can 
be constructed by properly renormalizing the inverse operitor T-I.  In the following, we 
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derive such an operator for the diamond structure. We decompose the contribution of atoms 
on the diagonal and define an operator T by 

where p(n )  is the Mobius function [ 8 ]  defined by 
i f n = 1  

A n )  = 0 if n is divisible by a square I '  ( - 1 ) Y  if n is the product of q distinct primes. 
For example, y(2) = -1, y(3) = -1, p(4) = 0, y(5) = -1 ,  y(6) = I ,  etc. Then 
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The Mobius inversion theorem states that if 

then 

f ( r )  = C p ( n ) F ( n r )  
“ = I  

and vice verse. This gives, from equation (IZ), 

N 7 V . r )  = N-1 

from which we obtain T-’ = N .  
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Figure 1. The cohesive energy curves of diamond C and Si, and also zincblende Sic fitted to 
the universal binding energy function of Rose et al. 

Since now the operator T-’ contains far more information than the original form of 
equation (6), the convergency of equation (4) can be significantly faster. In the present 
calculation, the cohesive energy data are from the state-of-the-art ab initio pseudopotential 
total energy calculations within the framework of the local density approximation by Chang 
and Cohen 191. They used Murnaghan’s equation of stale to display the energy curves. 
Since only points around the equilibrium minimum of the energy curve are faithfully given 
by Murnaghan’s equation, we use instead the empirical universal binding energy function 
of Rose et a f  [IO] to reduce the cohesive energy at large lattice constants. The form of the 
function used by Rose er af is 

&oh(‘) = -EJ1 + 0- - rd / l lexp[ ( r  - r W 1  (16) 
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where E, is the binding energy at equilibrium nearest-neighbour distance re and I is a length 
scale related to the bulk modulus B by 

I = J&E,/24Bre. (17) 

The parameters E,, re and B have been given by Chang and Cohen [9] and the parameters 
used in equation (16) are listed in table 1. The curves for cohesive energy are displayed in 
figure I .  

Table 1. Parameters used for the cohesive energy EIWh and pair potential @ u w e s  fitted la the 
universal binding energy function of Rose et al. 

&Oh P 
C Si Sic C-C Si-Si Si-C 

E ,  (eVlatom) 7.94 4.84 6.66 1.166 1.245 1.318- 
r. (A) 1.544 2.352 1.888 1.920 2.789 2.320 
6 (Mbar) 4.38 0.92 2.12 
I (A)  0.3686 0.5084 0,4385 0.358 0.495 0.432 

The pair potential for the S i 4  bond is derived from the zincblende-structured silicon 
carbide. In this structure, the cohesive energy per SIC pair may be written as 

&oh(rI) = C 3 [ @ c c ( s r )  + @sisi(sr)I 
m 

,?=I 
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where r = 4rt/&. We use above-derived pair potential for C-C and S iSi  to calculate 
the terms @cc and his. If we move the terms @cc and @sist to the left-hand side of the 
equation. the derivation of @csi is straightforward, as above. To use the Mobius inversion 
theorem, the operator T may be defined as 

where r = 4rl /&.  The inverse of T is obtained as 

The remaining procedure is to use equation (4) as above for $JCC and +si%. 

3. Results and discussion 

The results of the potentials are displayed in figure 2. One observes that the minimum 
of the pair potential lies at a longer distance than that of the cohesive energy curve, and 
the nearest neighbours are repulsive since d@,/dr c 0. This was also observed by CGE 
for the elements of FCC Cu, and BCC K and W [ Z ] .  The shape of the potential curve is 
quite similar to the cohesive energy curve and it  also fits equation (16) well; so we have 
also listed the fitting parameters i n  table 1. Since ab initio pseudopotential total energy 
calculations are not available for large distances and the cohesive energy used in inversion 
in this range depended on the universal binding energy function of Rose et al, this means 
that the present pair potentials are not sufficiently accurate. Depending on more ab initio 
data and including additional higher-order terms of (r - r e ) / /  in the function of Rose et al 
[ I O ]  in equation (16), the situation may be improved. Since the procedure is reversible, all 
the information in the full energy function, such as the binding energy Ee, the equilibrium 
nearest-neighbour distance re and the bulk modulus E in equation (16), is reproducible. 

Some results can be inferred from the radial pairwise potentials. For example, since 
the nearest neighbours are repulsive (d@/dr c O), relaxation in the first interlayer spacing 
at the surface will result in an expansion in the vacuum. However, this may not be true in  
the real case, such as for Si [ I l l .  Carlsson and co-workers [2 ,6,7]  have discussed other 
results of the painvise potentials, such as the facts that pairwise potentials always produce 
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Figure 2. The pair potential Curves for the C-C, Si-Si, and Si-C bonds. 

a vanishing Cauchy pressure C j 2 - c ~  and are preferable to close-packed structures. For a 
more accurate description of interatomic potentials, the cohesive energy preferably should 
explicitly include volume-dependent terms and many-body-dependent terms [4,5, 121. It 
is preferable to calculate such terms ab initio. Then the way in which to use the present 
method to derive pair potentials is to merge these terms with the cohesive energy and to 
leave only the pairwise terms on one side of the equation. This procedure may be useful 
for part of the pair potentials in the tight-binding approximation of cohesive energy [5, 131. 

In conclusion, the CGE inversion method for pair potentials improved by Chen's 
Mobius function method has been applied to diamond-like structures and specifically to 
the compound system S i x .  
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